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Finite vs Infinite Dimensional Space

Finite Dimensional

Euclidean space

R,R2,R3, . . .

Balls

B = {x ∈ Rn : |x | < 1}

Cubes

Q = [−1,+1]3

Infinite Dimensional

Sequence spaces

RN = {(xi )∞i=1 : xi ∈ R}

Function spaces

RR = {f : R → R}

Lebesgue & Sobolev spaces
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Finite Dimensional Calculus

Consider a function f : B → R3, with B the
unit ball in 2D, given by

f (u, v) =

 u + v
u − v
u2 + v2


Then the gradient is given by

∇f (u, v) =

+1 +1
+1 −1
2u 2v


We can use this to investigate stationary
points, minima, maxima etc.

u

v



Infinite Dimensional Calculus

Now consider a functional f : RN → R, given by

f (x) = x1

Then the gradient is a sequence ∇f (x) with entries given by

(∇f (x))i = δ1,i =

{
1 i = 1

0 i > 1

We shall mainly focus on functionals defined on spaces of
functions.
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Local Minima in Finite Dimensions

We often use
∇f (x) = 0

to look for local minima.

Why does this work?
Taylor expand f :

f (x0 + ϵv)− f (x0) = ϵ∇f (x0)[v ] + ϵ2∇2f (x0)[v , v ] + o(ϵ2) ≥ 0

for any vector v . Then

∇f (x0) = 0

∇2f (x0) ≥ 0

is sufficient. However, only ∇2f (x0) ≥ 0 is necessary.
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Local Minima in Infinite Dimensions

Consider a functional

F [x ] =

ˆ 1

0
f (t, x(t), x ′(t))dt x ∈ C 2((0, 1),Rd)

For now, assume f ∈ C 1.

Again, use a Taylor expansion:

F (x0 + ϵφ)− F (x0) =

ˆ 1

0
f (t, x0 + ϵφ, x ′0 + ϵφ′)− f (t, x0, x

′
0)dt

= ϵ

ˆ 1

0
fx(t, x0, x

′
0)φ+ fx ′(t, x0, x

′
0)φ

′ dt + o(ϵ)

= ϵ

ˆ 1

0

(
fx(t, x0, x

′
0)− fx ′(t, x0, x

′
0)

′)φdt + o(ϵ)

We want this to be positive for all φ ∈ C∞
c (0, 1) and small ϵ.
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Local Minima in Infinite Dimensions

If we want

ˆ 1

0

(
fx(t, x0, x

′
0)− fx ′(t, x0, x

′
0)

′)φdt = 0 ∀φ ∈ C∞
c (0, 1)

we must have

δF

δx
:= fx(t, x0, x

′
0)− fx ′(t, x0, x

′
0)

′ = 0 ∀t ∈ [0, 1]

This is known as the Euler-Lagrange equation. It is a second
order differential equation to be solved for x0(t), provided we
specify initial/boundary conditions.
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Arc Length

Consider two points a,b ∈ Rd .
What is the shortest path connecting them?

The arc length of a path r(t) is

L[r] =

ˆ 1

0

∣∣r′(t)∣∣
2
dt

so

δL

δr
= 0− d

dt

r′(t)

|r′(t)|2
= −

r′′(t) |r′(t)|2 − r′(t) r′(t)
|r′(t)|2

· r′′(t)

|r′(t)|22

=
(
r′(t)⊗ r′(t)−

∣∣r′(t)∣∣2
2
I
) r′′(t)

|r′(t)|32
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Arc Length

When d > 1

r′(t)⊗ r′(t)−
∣∣r′(t)∣∣2

2
I ̸= 0

Hence we solve

r′′(t) = 0 r(0) = a, r(1) = b

This gives
r(t) = (b− a)t + a



Arc Length
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Projectiles

The action of a particle of mass m travelling along a path r(t),
under the influence of gravity, is

S [r] =

ˆ 1

0

m

2

∣∣r′(t)∣∣2
2
+mg · r(t) dt g = (0,−g)

so
δS

δr
= mg − d

dt
mr′(t) = −m(r′′(t)− g)

If we launch a particle from a cannon at the origin and it lands at
(1, 0). The trajectory must solve

r′′(t) = g r(0) = (0, 0), r(1) = (1, 0)
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Brachistochrone

Consider a smooth light ball travelling along a path r(t) from the
origin to (+1,−1).

The time taken for the ball to reach its destination is

T [r] =

ˆ 1

0

|r′(t)|2√
2g · r(t)

dt =

ˆ −1

0

√
1 + y ′(x)2√
−2gy(x)

dx

so
δT

δr
=

√
1 + y ′(x)2√
8g(−y(x))3

− d

dx

y ′(x)√
1 + y ′(x)2

√
−2gy(x)

=
1 + y ′(x)2 + 2y(x)y ′′(x)√

−8gy(x)3(1 + y ′(x))3
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Brachistochrone

Thus we need to solve

1 + y ′(x)2 + 2y(x)y ′′(x) = 0 y(0) = 0, y(1) = −1

The solution to this is an example of a cycloid and can be written
as

x(ωθ) = α(θ − sin(θ))

y(ωθ) = α(1− cos(θ))

for an appropriate choice of α > 0 and ω.
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Elasticity & SME

Deformations of materials Ω are
often investigated by studying
functionals:

E [u] =

ˆ
Ω
φ(∇u, θ)dV

where

E is the total energy of the
material.

φ is the stored energy
density.

u is an admissible
deformation.

θ is the temperature.



Shape Memory Effect

Changing the temperature changes the functional and thus
changes the minimisers (what we observe).
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Definitions

Dirichlet Energy Functional

The Dirichlet energy functional D(u) can be used to describe the
strain energy density under a deformation u.

D(u) =
ˆ
B
|∇u|2F dx u ∈ u0 +W 1,2

0 (B;R2)

with B the unit ball and u0 is the double-covering map [1].

In showing that u0 is a stationary point of this functional, we
introduce an ’excess’ functional E :

D(u) = D(u0) + E (u − u0)

where, in particular, we have

E (u) = Ef (u) :=

ˆ
B
|∇u|2F + f (x) det∇u dx

with f (u) = 3 log |x |2 (often called a ’pressure’ function) [1].
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Definitions

A 1D Family of Polyconvex Functions

The functional

Ef (u) =

ˆ
B
|∇u|2F + f (x) det∇u dx u ∈ W 1,2

0 (B;R2)

is polyconvex for any choice of f ∈ Lip(B).

We will focus on the case of f (x) = λ |x |2 for a parameter λ ∈ R+

and denote Eλ := Ef .

We observe that:

Eλ(0) = 0.

Eλ is either unbounded below or bounded below by zero.

Hence Eλ has a global minimum iff Eλ ≥ 0.
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Sufficient Conditions for Global Minimum

Pointwise Hadamard

We can use of the following theorem

Hadamard’s Inequality [3]

For any matrix A ∈ R2×2, we have |A|2F ≥ 2 |detA|.

to show

Eλ(u) ≥
ˆ
B
|∇u(x)|2F −

λ

2
|x |2 |∇u(x)|2F dx

=

ˆ
B

(
1− λ

2
|x |2
)
|∇u(x)|2F dx ≥ 0

for λ ≤ 2. Can we do better?
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Sufficient Conditions for Global Minimum

Fourier Series & Poincaré Inequality

Consider a Fourier expansion of u as

u =
∑
j≥0

u(j) =
1

2
A0(r) +

∑
j>0

Aj(r) cos(jθ) + Bj(r) sin(jθ)

with Aj(1) = Bj(1) = 0 for each j ≥ 0 [1].

Then we make use of a Poincaré inequality for the Fourier modes:

Poincaré Inequality for Fourier Modes

Let j ≥ 1. Then

ˆ
B

∣∣∣u(j)∣∣∣2
2
dx ≤ 1

j20

ˆ
B

∣∣∣u(j),r

∣∣∣2
2
dx

where j0 is the first zero of a Bessel function.
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Consider a Fourier expansion of u as

u =
∑
j≥0

u(j) =
1

2
A0(r) +

∑
j>0

Aj(r) cos(jθ) + Bj(r) sin(jθ)

with Aj(1) = Bj(1) = 0 for each j ≥ 0 [1].
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Sufficient Conditions for Global Minimum

Applying the Inequality

Applying this inequality, we find

Eλ(u) =
∑
j≥0

ˆ
B

∣∣∣u(j),r

∣∣∣2
2
+
∣∣∣u(j),τ

∣∣∣2
2
+

λ

2

〈
u(j), Ju(j),τ

〉
2
dx

≥
∑
j≥0

ˆ
B
j20

∣∣∣u(j)∣∣∣2
2
+
∣∣∣u(j),τ

∣∣∣2
2
− λ

2

∣∣∣u(j)∣∣∣
2

∣∣∣u(j),τ

∣∣∣
2
dx

=
∑
j≥0

ˆ
B
UT

j MλUj dx Uj =

(∣∣u(j)∣∣
2∣∣∣u(j),τ

∣∣∣
2

)
Mλ =

(
j20 −λ

4

−λ
4 1

)
Then we have that λ ≤ 4j0 ⇒ Mλ ≥ 0 ⇒ Eλ ≥ 0.

Here 4j0 ≈ 9.619 is a significant improvement on the previous
bound of λ ≤ 2.
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Necessary Conditions for Global Minimum

The Approach

We shall first construct a solution u∗ ∈ W 1,2
0 to

∇u∗(x) ∈ O(2) a.e. x ∈ Q := [−2,+2]2

We will then shift/scale this solution on part of the ball to
construct a map u.

On the remainder of the ball (which we shall denote by K ), we will
take u = 0.

A necessary condition can then be derived:

λ ≤ 2(π − |K |)
|I0|
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Necessary Conditions for Global Minimum

Partial Differential Inclusions

The PDI
∇u ∈ O(2)

is an example of the probelm of potential wells:

The Problem of Potential Wells [2, 4, 5]

∇u ∈
⋃
i

SO(d)Ai Ai ∈ Rd×d

The following is known for this PDI:

Theorem (Dacorogna and Marcellini) [3]

There exists a dense set of solutions in W 1,∞(Q;R2).

Theorem (Liouville) [4]

All solutions are piecewise affine.
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Necessary Conditions for Global Minimum

Constructed Solution

A solution has been constructed for the 3D equivalent of this PDI
[2].

We can adapt this for our needs.

Figure: Constructed solution u∗ and its Jacobian det∇u∗
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Necessary Conditions for Global Minimum

Tiling the Solution

We can then tile the ball with this solution.

Figure: Tiled Solution with 15 Squares
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Necessary Conditions for Global Minimum

Numerical Results

We will make use of a simple tiling of 2 squares with

c1 =

(
+0.1
+0.3

)
w1 = 1.0 c2 =

(
−0.3
−0.5

)
w1 = 0.6

We then find that

|K | = π − 1.36 ≈ 1.78159

|I0| = 1.83384× 10−2 ± 2× 7.62939× 10−6

where the integral was approximated by calculating symbolically on
the region |x |∞ ≤

∑21
k=0

1
2k

and bounding on the remaining square
annulus.

This leads to a bound of λ ≤ 148.446.
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Outlook

Summary

To summarise we have found that:

λ ≤ 9.619 is sufficient for Eλ ≥ 0.

λ ≤ 148.446 is necessary for Eλ ≥ 0.

With further optimisations, we could try to refine these bounds.

We could try to find λcrit such that Eλ ≥ 0 iff λ ≤ λcrit.
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