
Topology in Analysis

Elliott Sullinge-Farrall

University of Surrey

May 25, 2023



Table of Contents

1 Introduction

2 Topology of Admissibles

3 Current Work & Conclusions



Quick Review of Sobolev Maps

The weak derivative of a locally intgegrable function u : B → R2

is ∇u : B → R2×2 satisfying

ˆ
B
u · ∇φdx = −

ˆ
B
φ · ∇u dx ∀φ ∈ C∞

c (B;R2)

If it exists, it is unique up to an equivalence class.

The L2 norm of a measurable function u : B → R2 is

∥u∥2 =

√ˆ
B
|u|22 dx

A function u : B → R2 is in W 1,2(B;R2) if it is weakly
differntiable and ∥u∥2, ∥∇u∥2 are both finite.
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Energy Functional & Admissibles

The Dirichlet energy functional D(u) can be used to describe the
strain energy density under a deformation u.

D(u) =
ˆ
B
|∇u|2F dx u ∈ W 1,2(B;R2)

We shall consider the following space of admissible maps

A = {u ∈ u2 +W 1,2
0 (B;R2) : det∇u = 1 a.e. }

This is commonly referred to as an incompressibility constraint.

The chosen boundary condition is the double covering map
u2 : B → B ′ := 1√

2
B which is given (in complex coordinates) by

r 7→ 1√
2
r θ 7→ 2θ
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Variations & Optimisation

For a domain Ω ⊂ R2, we define

V(Ω) := {φ ∈ id+W 1,2
0 (Ω;R2) : det∇φ = 1 a.e. }

Then a mixed variation of u2 is a map of the form

ψ ◦ u2 ◦ φ ∈ A φ ∈ V(B) ψ ∈ V(B ′)

It is known that u2 is a local minimiser of D : A → R amongst this
class of variations.

But just how big/small is this class?
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The Topological Degree

Consider a map u ∈ C 1(B;R2) and a regular point y ̸∈ u(∂B).
The topological degree is given by

deg(u,B, y) =
∑

x∈u−1{y}

sgn det∇u(x)

This can be extended to u ∈ C (B;R2) and any y ̸∈ u(∂B).

We first have that

u|∂B = v |∂B ⇒ deg(u,B, y) = deg(v ,B, y)

We also have that the degree is constant on connected
components of u(B).
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Degree of Admissibles

We can immediately see that all admissible maps are degree 2.

However, we know more about u2.

It is 1:1 at the origin.

It is 2:1 everywhere else.

If we restrict to homeomorphisms in V(Ω), then all mixed
variations share this property.

What about a general admissible map?
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Counting Invertible Points

Consider u ∈ A such that
∣∣u−1{y}

∣∣ <∞. It turns out that∣∣u−1{y}
∣∣ ≤ deg(u,B, y) ∀y

since admissibles preserve orientation.

We then define the associated self-map idu : B → B by

idu(x) =

{
x ′ u−1(u(x)) = {x , x ′}
x u−1(u(x)) = {x}

We observe that invertible points of u are precisely fixed points
of idu.

How many are there?
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Lefschetz-Hopf Theorem

The Lefschetz number is

Λidu =
∑
k≥0

(−1)k tr ((idu)∗|Hk(B;Q))

=
∑
k=0

(−1)k tr ((idu)∗|Hk(B;Q)) (B contractible)

= tr id = 1 (B connected)

The Lefschetz-Hopf theorem for ENR’s states that

Λidu =
∑

x∈Fix(idu)

i(idu, x) =
∑

x∈Fix(idu)

1 = |Fix(idu)|

Result: Any orientation preserving injective map self-map of the
ball has either 1 fixed point or infinite fixed points.
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Hadamard-Cacciopoli Theorem

We now know that any u ∈ A such that
∣∣u−1{y}

∣∣ <∞ satisfies

It is 1:1 somewhere in its domain.

It is 2:1 everywhere else.

This is interesting when compared to the C 1 case.

If u ∈ C 1(X ;Y ) is proper for X connected and Y simply
connected, then

det∇u ̸= 0 ⇒ u is a diffeomorphism

so a discontinuity in the derivative is essential for 2:1 behaviour.
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Elephant in the Room

What if there exists y such that
∣∣u−1{y}

∣∣ = ∞? Either countable
or uncountable?

Due to the nature of Sobolev spaces, this is possible and the
behaviour is difficult to detect.

In the uncountable case, we could have a line in B that is
compressed to a point in the image.



Elephant in the Room

What if there exists y such that
∣∣u−1{y}

∣∣ = ∞? Either countable
or uncountable?

Due to the nature of Sobolev spaces, this is possible and the
behaviour is difficult to detect.

In the uncountable case, we could have a line in B that is
compressed to a point in the image.



Elephant in the Room

What if there exists y such that
∣∣u−1{y}

∣∣ = ∞? Either countable
or uncountable?

Due to the nature of Sobolev spaces, this is possible and the
behaviour is difficult to detect.

In the uncountable case, we could have a line in B that is
compressed to a point in the image.



Table of Contents

1 Introduction

2 Topology of Admissibles

3 Current Work & Conclusions



Proposed Construction

We want to construct a map that has gradients in SL(2) that can
map a curve onto a point.

We could stitch together a sequence of maps that contract curves
by progressively larger amounts.

We consider maps on an annulus Brn − Brn+1 of the form

un(x) = ℓn(x)R(ωn(x))x

Here ℓn are scalar functions governing the contracting factor and
ωn are scalar functions governing rotation.

The rn must be a decreasing sequence in [0, 1] that is bounded
away from zero and has initial condition r0 = 1.
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Derived PDE

We calculate the Jacobian using polar coordinates

det∇un = (rℓn,r + ℓn)ℓn(ωn,θ + 1)− rℓn,θℓ
2
nωn,r

If we assume ℓn = ℓn(r) then the Jacobian constraint is just

ωn,θ =

(
1

(rℓn,r + ℓn)ℓn
− 1

)
⇒ ω =

(
1

(rℓn,r + ℓn)ℓn
− 1

)
θ + Cn(r)

for arbitrary functions Cn, which we shall set to zero.
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Boundary Conditions

For u to be continuous, we must have that a change in a multiple
of 2π in θ results in a change of a multiple of 2π in ω.

This leads us to the following ODE for ℓn:

(rℓn,r + ℓn)ℓn = 1

which has solution

ℓn(r) =

√
cn + r2

r

for some constants cn.
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Continuity & Contracting Factors

To ensure continuity we must have

ℓn+1(rn) = ℓn(rn)

and to get increasing contractions we must have an increasing
sequence αn with α1 = 1 such that

ℓn(rn) =
rn
αn

Combining these with the equation for ℓn in the previous slide, we
obtain

ℓn(r) =
1

r

√√√√r2n

((
rn
αn

)2

− 1

)
+ r2

rn =
αn√
2
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1±

√
1 +

(
2

αnαn−1

)2

(α2
n−1 − r2n−1)r

2
n−1, r0 = 1
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Conclusion

Unfortunately, this sequence is increasing for αn increasing (proof
left as exercise).

How can we modify this approach to successfully construct a
solution?

Change from annulus to sector based partitioning?

Make the ℓn depend on θ?

Try to contract a ray rather than a circle?
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