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The weak derivative of a locally intgegrable function v : B — R?
is Vu : B — R?*? satisfying

/u-Vgpdx-—/«p-Vde Vo € C°(B;R?)
B B

If it exists, it is unique up to an equivalence class.

The L2 norm of a measurable function u: B — R? is

2
lull, = / 02 dx
B

A function u: B — R2? is in W12(B;R?) if it is weakly
differntiable and ||u||,, ||Vul|, are both finite.
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Energy Functional & Admissibles

The Dirichlet energy functional D(u) can be used to describe the
strain energy density under a deformation u.

D(uv) :/ Vul2 dx  ue WH(B;R?)
B

We shall consider the following space of admissible maps
A={ueuwm+ W01’2(B;IR<2) cdetVu=1ae }

This is commonly referred to as an incompressibility constraint.

The chosen boundary condition is the double covering map

u:B— B = %B which is given (in complex coordinates) by

r— r 60— 20

1
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For a domain Q C R2, we define

V(Q):={pecid +W01’2(Q;]R2) cdetVyp =1ae. }
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Variations & Optimisation

For a domain Q C R?, we define
V(Q) = {p cid+W,* (2 R?) : detVp =1 ae. }
Then a mixed variation of uy is a map of the form

Ypowmope A peV(B) yeV(B)
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Variations & Optimisation

For a domain Q C R?, we define
V(Q) ={peid +W01’2(Q;R2) cdetVyp=1ae. }
Then a mixed variation of uy is a map of the form
Ypowmope A peV(B) yeV(B)

It is known that wu is a local minimiser of D : A — R amongst this
class of variations.

But just how big/small is this class?
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The Topological Degree

Consider a map u € C*(B;R?) and a regular point y & u(dB).
The topological degree is given by

deg(u, B,y) = Z sgn det Vu(x)
xeu=H{y}

This can be extended to u € C(B;R?) and any y ¢ u(9B).



The Topological Degree

Consider a map u € C*(B;R?) and a regular point y & u(dB).
The topological degree is given by

deg(u, B,y) = Z sgn det Vu(x)
xeu=H{y}

This can be extended to u € C(B;R?) and any y ¢ u(9B).
We first have that

ulpg = v|pg = deg(u, B,y) = deg(v, B, y)



The Topological Degree

Consider a map u € C*(B;R?) and a regular point y & u(dB).
The topological degree is given by

deg(u, B,y) = Z sgn det Vu(x)
xeu=H{y}

This can be extended to u € C(B;R?) and any y ¢ u(9B).
We first have that
ulpg = v|pg = deg(u, B,y) = deg(v, B, y)

We also have that the degree is constant on connected
components of u(B).
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Degree of Admissibles

We can immediately see that all admissible maps are degree 2.

However, we know more about us.
@ It is 1:1 at the origin.
@ It is 2:1 everywhere else.

If we restrict to homeomorphisms in V(£2), then all mixed
variations share this property.



Degree of Admissibles

We can immediately see that all admissible maps are degree 2.

However, we know more about us.
@ It is 1:1 at the origin.
@ It is 2:1 everywhere else.
If we restrict to homeomorphisms in V(£2), then all mixed

variations share this property.

What about a general admissible map?
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Counting Invertible Points

Consider u € A such that |u=!{y}| < co. It turns out that

u"H{y}| < deg(u,B,y) Vy
since admissibles preserve orientation.

We then define the associated self-map id, : B — B by
a0 = [ ) = (o)
x uTHu(x) = {x}

We observe that invertible points of u are precisely fixed points
of id,.

How many are there?
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Lefschetz-Hopf Theorem

The Lefschetz number is

Aig, = Z(—l)ktr((idu)*’Hk(B? Q))

k>0
= Z u)«|Hk(B; Q)) (B contractible)
= tr|d =1 (B connected)

The Lefschetz-Hopf theorem for ENR's states that

Na,= > i(idu,x)= Y 1=|Fix(id,)|

x€EFix(idy) x€EFix(id,)

Result: Any orientation preserving injective map self-map of the
ball has either 1 fixed point or infinite fixed points.
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Hadamard-Cacciopoli Theorem

We now know that any u € A such that |u~{y}| < oo satisfies
@ It is 1:1 somewhere in its domain.
@ It is 2:1 everywhere else.

This is interesting when compared to the C! case.

If ue CL(X;Y) is proper for X connected and Y simply
connected, then

det Vu # 0 = u is a diffeomorphism

so a discontinuity in the derivative is essential for 2:1 behaviour.
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Elephant in the Room

What if there exists y such that |u='{y}| = co? Either countable
or uncountable?

Due to the nature of Sobolev spaces, this is possible and the
behaviour is difficult to detect.



Elephant in the Room

What if there exists y such that |u='{y}| = co? Either countable
or uncountable?

Due to the nature of Sobolev spaces, this is possible and the
behaviour is difficult to detect.

In the uncountable case, we could have a line in B that is
compressed to a point in the image.
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Here £, are scalar functions governing the contracting factor and
wy, are scalar functions governing rotation.



Proposed Construction

We want to construct a map that has gradients in SL(2) that can
map a curve onto a point.

We could stitch together a sequence of maps that contract curves
by progressively larger amounts.

We consider maps on an annulus B,, — B, ,, of the form

n+1
un(x) = Lp(x)R(wn(x))x

Here £, are scalar functions governing the contracting factor and

wy, are scalar functions governing rotation.

The r, must be a decreasing sequence in [0, 1] that is bounded
away from zero and has initial condition ryg = 1.



We calculate the Jacobian using polar coordinates

det Vu, = (rln, + €n)ln(wng + 1) — rlngl2wn
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Derived PDE

We calculate the Jacobian using polar coordinates
det Vup = (rln s+ £n)ln(wnp +1) — rﬁn’gﬁiwm,

If we assume ¢, = £p(r) then the Jacobian constraint is just

(e
“n = (rgn,r + en)gn



Derived PDE

We calculate the Jacobian using polar coordinates
det Vup = (rln s+ £n)ln(wnp +1) — rﬁn’gﬁiwm,

If we assume ¢, = £p(r) then the Jacobian constraint is just

(e
“n = (rgn,r + en)gn

1
Y — ;
= w <(r€n,r+£n)€n >0+C(r)

for arbitrary functions C,, which we shall set to zero.
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For u to be continuous, we must have that a change in a multiple
of 27 in @ results in a change of a multiple of 27 in w.
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Boundary Conditions

For u to be continuous, we must have that a change in a multiple
of 27 in @ results in a change of a multiple of 27 in w.

This leads us to the following ODE for /¢,
(rlnr+ )y =1

which has solution
v/ Cn 4 r?

r

ln(r) =

for some constants c,.



To ensure continuity we must have

€n+1(rn) = gn(rn)
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Continuity & Contracting Factors

To ensure continuity we must have

£n+1(rn) - gn(rn)

and to get increasing contractions we must have an increasing
sequence o, with ay = 1 such that
I'n

lo(r) = o

n



Continuity & Contracting Factors

To ensure continuity we must have
£n+1(rn) - gn(rn)

and to get increasing contractions we must have an increasing
sequence o, with ay = 1 such that

r
lo(r) = a—';
Combining these with the equation for £, in the previous slide, we

obtain
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Conclusion

Unfortunately, this sequence is increasing for «, increasing (proof
left as exercise).

How can we modify this approach to successfully construct a
solution?
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Conclusion

Unfortunately, this sequence is increasing for «, increasing (proof
left as exercise).

How can we modify this approach to successfully construct a
solution?

Change from annulus to sector based partitioning?
Make the ¢, depend on 07

Try to contract a ray rather than a circle?
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