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�Elastic materials take configurations that minimise an
energy functional.

�When an elastic incompressible material is stretched,
we can sometimes split the energy into the energy of
a candidate minimiser and an excess functional.

�We seek to find conditions under which we can find a
global minimiser of such functionals.

Defining the Functional

Let B be the unit ball in R2. We define functionals If

If(u) =

ˆ
B

|∇u|2F + f (x) det∇u dx u ∈ W 1,2
0 (B;R2)

for f ∈ Lip(B;R).
�When f = 0 we recover the Dirichlet energy func-
tional

I0(u) =

ˆ
B

|∇u|2F dx

� If If is negative at any point, it is unbounded below.

� Since If(0) = 0, it is sufficient to show that If ≥ 0 to
demonstrate the existence of a global minimiser.

�Take Iλ := If with f (x) = λ |x|2.
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Sufficient Conditions
Use Hadamard’s inequality [3] pointwise, to get

Iλ(u) ≥
ˆ
B

(
1− λ

2
|x|2
)
|∇u(x)|2F dx

Hence, λ ≤ 2 is sufficient for Iλ ≥ 0.

Alternatively, decompose [1] u ∈ W 1,2
0 (B;R2) as

u(x) =
∑
j≥0

u(j)(x) =
∑
j≥0

Aj(r) cos(jθ) +Bj(r) sin(jθ)

Use a weighted Poincaré inequality for the Fourier
modes:̂

B

∣∣∣u(j)∣∣∣2
2
dx ≤ 1

J2
0

ˆ
B

∣∣∣u(j),r

∣∣∣2
2
dx j ≥ 0

where J0 is the first zero of a Bessel function. Then

Iλ(u) ≥
∑
j≥0

ˆ
B

UT
jMλUj dx Uj =

(∣∣u(j)∣∣
2∣∣∣u(j),τ

∣∣∣
2

)
Thus, Mλ ≥ 0 is sufficient for Iλ ≥ 0.
Hence, λ ≤ 4J0 ≈ 9.619 is sufficient.

Necessary Conditions

We consider a specific u∗ ∈ W 1,2
0 (B;R2) satisfying:

� u∗ = 0 on some region K ⊂ B.

�∇u∗ ∈ O(2) on some squares Qi ⊂ B.

Then a necessary condition is

λ ≤ 2(π − |K|)
|I0|

where I0 is given by an integral of det∇u∗(x) |x|2 over
the squares Qi.

Constructing Solutions to ∇u ∈ O(2)

An example of the problem of potential wells [2, 4, 5].
Theorem (Dacorogna and Marcellini) [3]: There exists a
dense set of solutions in W 1,∞(Q;R2)
Theorem (Liouville) [4]: All solutions are piecewise affine.
We adapt an explicit 3D [2] solution to 2D.

Take two squares with centres and widths:

c1 =

(
+0.1
+0.3

)
w1 = 1.0 c2 =

(
−0.3
−0.5

)
w1 = 0.6

We obtain |I0| = 1.83384× 10−2 ± 2× 7.62939× 10−6.
Hence we require λ ≤ 148.446.

Conclusions
�We have improved on the bound for λ that is sufficient for
Iλ ≥ 0 given by using Hadamard’s inequality pointwise.

�We have found a bound for λ that is necessary for Iλ ≥ 0
by constructing a solution to a previously studied PDI.

�This bound may be further improved by finding a different
solution to∇u ∈ O(2) or using an alternative configuration
of squares Qi.
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