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Hadamard’s Inequality

We start with the classical (or pointwise) Hadamard’s inequality

|M|n ≥ Cn |detM| ∀M ∈ Rn×n

where Cn = n
n
2 is the optimal constant.

We then define a mean Hadamard inequality to be of the form

Ep(φ) :=

ˆ
Ω
|∇φ|2 + p(x) det∇φdx ≥ 0 ∀φ ∈ V ⊂ H1

0 (Ω;Rn)

We seek p : Ω → R such that this inequality holds.

We call Ep the excess functional with pressure function p.

From now on, we will consider only the case of n = 2 dimensions.
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Basic Properties

In general, we find that the ”size” of p is not important,

but how
much it ”varies” is.

In particular, the excess is translation invariant w.r.t pressure:

Ep+p0 = Ep ∀p0 ∈ R

This can be used to obtain our first result:

Sufficient Condition (Bounded Pressure)

If |p− pΩ|∞ ≤ 2, then Ep ≥ 0.

We finally note that, since Ep is degree 2 homogeneous,
non-negativity is equvalent to existence of a global minimiser.
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Elasticity

We now switch perspective to that of elasticity. Consider
deformations u ∈ H1

u0(Ω;R
2) of some flat material Ω.

The elastic energy of such a deformation is given by the Dirichlet
energy functional

D(u) =
ˆ
Ω
|∇u|2 dx

Principle of least action tells us that the observed deformation will
minimise this energy:

∆u = 0

u|∂Ω = u0

However, in general, these minimisers will not be mass conserving:

det∇u ̸= 1
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Mass Conservation

We now introduce the space of mass conserving admissibles:

A = {u ∈ H1
u0(Ω;R

2) : det∇u = det∇u0 = 1}

We consider additive variations of u0 in this (non-linear) space, so
we require V such that

φ ∈ V ⇒ u0 + φ ∈ A

We find that

V = {φ ∈ H1
0 (Ω;R2) : det∇φ = − cof∇u0 · ∇φ}
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Derivation of the Excess

We then find that

D(u0 + φ) = D(u0) + Ep(φ) ∀φ ∈ V

where p solves ∆u0 +
1
2 cof(∇u0)∇p = 0.

Hence Ep ≥ 0 is equivalent to the minimisation of the elastic
energy (w.r.t to these variations).
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Convexity of the Excess

The ease of minimising the Dirichlet energy is largely due to the
fact that it is convex.

The excess, however, is only polyconvex.

Polyconvexity (2D)

A function f : R2×2 → R is polyconvex if there exists convex
g : R2×2 × R → R such that

f (M) = g(M, detM)

There are existing DM type results for polyconvex functionals but
Ep does not meet the growth conditions for them to be applied.

This motivates the search for novel techniques to analyse these
functionals.
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Piecewise Constant Pressure

J.Bevan, M.Kruž́ık and J.Valdman have considered piecewise
constant p.

If we consider two state pressure on a square domain
Ω = [−1,+1]2

p = cχΩ Ω′ ⊂ Ω with suff. boundary regularity

then Ep ≥ 0 iff |c | ≤ 2C2 = 4.

They also considered three state pressure with either ’insulation’ or
’point-contact’.
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’Window’ vs. ’Grid’

Above we have an example of a
’window’ layout pressure
function.

On the right is an example of a
’grid’ layout pressure function.



’Window’ vs. ’Grid’

For the ’window’ layout, there exists a γ0 > 0 (depending only on
the domain) such that

c ≤ 2
√
1 + γ0 ⇒ Ep ≥ 0

It can also be shown that Ep ≥ 0 can not be achieved for
arbitrarily small insulation width.

For the ’grid’ layout, we have

|c | ≤
√
8 ≈ 2.83 ⇐⇒ Ep ≥ 0

There are also partial results for finer grids.
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Radially Linear Pressure

Perhaps the next most simple case to consider is Ω = B and

p(r) = cr r = |x |

For reference purposes, we calculate

pB =
2

3
c ⇒ |p− pB |∞ =

2

3
c

so |c | ≤ 3 is sufficient for Ep ≥ 0.

Can we obtain a mean Hadamard inequality with |c | > 3?
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Fourier Splitting

We shall start by writing φ as a Fourtier series:

φ =
∑
j≥0

φ(j) =
1

2
A0(r) +

∑
j>0

Aj(r)cos (jθ) + Bj(r)sin (jθ)

We then observe that the excess splits over the modes in the
following way:

Ep(φ) =
∑
j≥0

ˆ
B

∣∣∣φ(j)
,r

∣∣∣2 + ∣∣∣φ(j)
,τ

∣∣∣2 + c

2
φ(j)
,τ × φ(j) dx

We note that, if we replaced φ
(j)
,r with φ(j), we would have

something that resembles a quadratic form in the integrand.
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Weighted Poincaré Inequality

We now make use of the following result, a corollary of a weighted
Poincaré inequality:

Poincaré Inequality for Modes

Denote by j0 the first zero of the Bessel J function. Then

ˆ
B

∣∣∣φ(j)
∣∣∣2 dx ≤ 1

j20

ˆ
B

∣∣∣φ(j)
,r

∣∣∣2 dx ∀j ≥ 1

where the inequality is sharp.

This allows us to write

Ep(φ) ≥
∑
j≥0

ˆ
B
v (j) ·M(c)v (j) dx v (j) =

(∣∣φ(j)
∣∣∣∣∣φ(j)

,τ

∣∣∣
)
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Sufficient Condition for Non-Negativity

The matrix for the quadratic form is

M(c) =

(
j20 − c

4
− c

4 1

)

We compute

trM = 1 + j20 detM = j20 −
(c
4

)2
Hence, we have

c ≤ 4j0 ⇒ Ep(φ) ≥ 0

For reference, 2
3 × 4j0 ≈ 6.41
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Necessary Conditions

In general, obtaining tight necessary conditions is difficult.

However, reasonable bounds can be obtained via numerical
calculations.

We will seek out a φ such that, as we increase c, the excess
eventually becomes negative.

The ’better’ our choice of φ, the tighter our bounds will be.

Inspired by the sharpness of the pointwise Hadamard inequality, we
consider φ satisfying the PDI:

∇φ ∈ O(2)

φ|∂B = 0

It is known that there is a dense solution space in W 1,∞ and that
every solution is piecewise affine.
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Constructing Solutions

For convenience, we construct a solution on the domain [−2,+2]2

and then scale several copies of the solution to make them fit in
the unit ball without overlaps.

In the gaps between these rescaled squares, we just take φ = 0.
This gives a solution to the PDI on B.

We then compute the excess in terms of c and calculate the value
of c for which this becomes negative.

We will obtain different thresholds for different arrangements of
the squares.
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Construction on a Square

The solution on the square is plotted below:



Numerical Results

The lowest upper bound obtained so far uses two squares:

1 Center (+0.1,+0.3) and width 1.0.

2 Center (−0.3,−0.5) and width 0.6.

This gives a necessary condition of |c | ≤ 148.45.

Note that any symmetric arrangement will not yield a finite upper
bound.
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Outlook

There is room for improvement in both the case of piecewise
constant pressure and radially linear pressure (more generally,
radially Lipschitz pressure).

More advanced numerical techniques could reduce the gap between
sufficient and necessary bounds.

Currently working on radially logarithmic pressure (p ∈ BMO) that
arise from u0 being a covering map.

How does u0 cause radial symmetry in p? What about regularity?



Outlook

There is room for improvement in both the case of piecewise
constant pressure and radially linear pressure (more generally,
radially Lipschitz pressure).

More advanced numerical techniques could reduce the gap between
sufficient and necessary bounds.

Currently working on radially logarithmic pressure (p ∈ BMO) that
arise from u0 being a covering map.

How does u0 cause radial symmetry in p? What about regularity?



Outlook

There is room for improvement in both the case of piecewise
constant pressure and radially linear pressure (more generally,
radially Lipschitz pressure).

More advanced numerical techniques could reduce the gap between
sufficient and necessary bounds.

Currently working on radially logarithmic pressure (p ∈ BMO) that
arise from u0 being a covering map.

How does u0 cause radial symmetry in p? What about regularity?



Outlook

There is room for improvement in both the case of piecewise
constant pressure and radially linear pressure (more generally,
radially Lipschitz pressure).

More advanced numerical techniques could reduce the gap between
sufficient and necessary bounds.

Currently working on radially logarithmic pressure (p ∈ BMO) that
arise from u0 being a covering map.

How does u0 cause radial symmetry in p? What about regularity?


	Motivation
	Results
	Outlook

